
El ión acilo es un electrófilo potente y reacciona con el benceno para formar un catión ciclohexadienilo que pierde el protón para dar lugar a un acilbenceno.

El producto de la reacción de acilación es una acilbenceno (una alquil fenil cetona). El grupo carbonilo de la cetona tiene electrones no enlazantes que se complejan con el catalizador AlCl3, lo que hace que se necesite 1 equivalente de AlCl3 en la reacción de acilación. Agregando agua se hidroliza el complejo cetona-AlCl3 y se obtiene el acilbenceno libre.
La reacción de acilación supera dos de las tres limitaciones de la reacción de alquilación: los cationes acilo no sufren transposiciones, al contrario que los carbocationes, y el producto de la reacción se desactiva de modo que no se producen reacciones posteriores. Sin embargo, al igual que la reacción de alquilación, la reacción de acilación no puede efectuarse sobre anillos aromáticos muy desactivados.La transformación de los acilbencenos en alquilbencenos se puede conseguir mediante la denominada reducción de Clemmensen. La reducción se consigue tratando al correspondiente acilbenceno con zinc amalgamado con mercurio (zinc tratado con sales de mercurio) en HCl. Esta secuencia de dos pasos permite obtener muchos alquilbencenos que no se pueden obtener directamente por alquilación directa.
2) Ataque electrófilo

Ion nitronio
La nitración de anillos aromáticos es una reacción de particular importancia, debido a que los nitroarenos que se producen pueden reducirse con reactivos como hierro o cloruro estannoso para formar aninoarenos (anilina).
2) Ataque electrófilo sobre el benceno por bromo activado.
3) El FeBr4- formado en la etapa anterior actúa ahora como base abstrayendo el protón del catión hexadienilo.




Según la teoría de orbitales moleculares, todos y cada uno de los seis carbonos que conforman el benceno, tienen hibridación sp2, y por tanto tienen geometría plana trigonal. 

